(Inverse Circular Functions)
1. पास्परिक परिर्वतन (Mutual Conversion)
(i) sin –1 X = cosec ̅1 ⟨1/x⟩
(ii) cosec ̅1 x = sin –1⟨1/x⟩
(ⅲ) cos –1x = sec –1x ⟨1/x⟩
(ⅳ ) sec –1x = cosec ̅1 x ⟨1/x⟩
(v) tan –1x = cot -1x ⟨1/x⟩
(V) cot -1x = tan –1x ⟨1/x⟩
2. θ = sin –1s X= cos –1 √1-x2 = tan –1 x/ √1- x2
3. θ = cos –1x = sin –1 √1-x2 =tan –1 1/ √1- x2
4. θ = tan –1x = sin –1 x/√1-x2 = cos –1 1/ √1+ x2
5. (i) sin –1 x+cos –1 x = π /2
(ii) tan –1x +cot –1x = π / 2
(ⅲ) sec –1x + cosec –1x = π / 2
6. (i) tan –1x +tan –1 y = tan –1⟨x+y/1-xy⟩
(ii) tan –1x -tan –1 y = tan –1⟨x-y/1+xy⟩
(ⅲ) cot –1x + cot –1y = cot –1 ⟨xy-1/x+y⟩
(ⅳ) cot –1x + cot –1y = cot –1 ⟨xy+1/x-y⟩
(v) tan –1x +tan –1 y +tan –1z = tan (x+y+z-xyz)/1-xy-yz-zx)
(ⅵ) 2tan –1x = tan –1 ⟨2x/1-x2 ⟩
= sin –1 ⟨2x/1+x2 ⟩ = cos –1⟨1-x2 ⟩/⟨1+x2 ⟩
(ⅶ) •2sin –1x = sin –1 ⟨2x/√1-x2 ⟩
•2cos –1x = cos –1⟨2x2 - 1⟩
(ⅷ) 3sin –1x = sin –1⟨3x -4x2⟩
3cos –1x = cos –1⟨4x2 - 3x⟩
3tan –1x y= tan –1⟨3x-x3⟩/⟨1-3x2⟩
(ⅸ) sin –1x + sin –1y = sin –1⟨x√1-y2 +y√1-x2⟩
• sin –1x _ sin –1y =⟨x√1-y2 -y√1-x2⟩
(X) cos –1x cos –1 y= cos –1⟨xy-√1-x2 √1-y2⟩
cos –1x cos –1 y= cos –1 ⟨xy+√1-x2 √1-y2⟩
टिप्पणी
0 टिप्पणियाँ